A New Bayesian Unit Root Test in Stochastic Volatility Models∗
نویسندگان
چکیده
A new posterior odds analysis is proposed to test for a unit root in volatility dynamics in the context of stochastic volatility models. Our analysis extends the Bayesian unit root test of So and Li (1999, Journal of Business and Economic Statistics) in the two important ways. First, a numerically more stable algorithm is introduced to compute Bayes factors, taking into account the special structure of the competing models. Owing to its numerical stability, the algorithm overcomes the problem of the diverging “size” in the marginal likelihood approach. Second, to improve the “power” of the unit root test, a mixed prior specification with random weights is employed. It is shown that the posterior odds ratio is the by-product of Bayesian estimation and can be easily computed by MCMC methods. A simulation study examines the “size” and “power” performances of the new method. An empirical study, based on time series data covering the subprime crisis, reveals some interesting results.
منابع مشابه
Bayesian Unit-root Testing in Stochastic Volatility Models with Correlated Errors
A series of returns are often modeled using stochastic volatility models. Many observed financial series exhibit unit-root non-stationary behavior in the latent AR(1) volatility process and tests for a unit-root become necessary, especially when the error process of the returns is correlated with the error terms of the AR(1) process. In this paper, we develop a class of priors that assigns posi...
متن کاملSimulating Exchange Rate Volatility in Iran Using Stochastic Differential Equations
The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملTesting for a Unit Root in the Volatility of Asset Returns
It is now well established that the volatility of asset returns is time varying and highly persistent. One leading model that is used to represent these features of the data is the stochastic volatility model. The researcher may test for non-stationarity of the volatility process by testing for a unit root in the log-squared time series. This strategy for inference has many advantages, but is n...
متن کاملScheduling security constraint unit commitment for power system including stochastic wind power generation
This paper introduces a new approach for scheduling security constraint unit commitment (SCUC) including wind farms. Because of uncertainty in wind power production, we tried to develop a new method for incorporating wind power generation in power plant scheduling. For this, wind power generation modeled with unit commitment in a non-linear optimization problem and simulated by submitting diffe...
متن کامل